Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 179: 114033, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342553

RESUMO

Elucidating the driving mechanism of microbial community succession during pepper fermentation contributes to establishing efficient fermentation regulation strategies. This study utilized three-generation high-throughput sequencing technology, microbial co-occurrence network analysis, and random forest analysis to reveal microbial community succession processes and driving mechanisms during pepper fermentation. The results showed that more positive correlations than negative correlations were observed among microorganisms, with positive correlation proportions of 60 %, 51.03 %, and 71.43 % between bacteria and bacteria, fungi and fungi, and bacteria and fungi in sipingtou peppers, and 69.23 %, 54.93 %, and 79.44 % in zhudachang peppers, respectively. Microbial interactions, mainly among Weissella hellenica, Lactobacillus plantarum, Hanseniaspora opuntiae, and Kazachstania humillis, could drive bacterial and fungal community succession. Notably, the bacterial community successions during the fermentation of two peppers were similar, showing the transition from Leuconostoc pseudomesenteroides, Lactococcus lactis, Weissella ghanensis to Weissella hellenica and Lactobacillus plantarum. However, the fungal community successions in the two fermented peppers differed significantly, and the differential biomarkers were Dipodascus geotrichum and Kazachstania humillis. Differences in autochthonous microbial composition and inherent constituents brought by pepper varieties resulted in different endogenous environmental changes, mainly in fructose, malic acid, and citric acid. Furthermore, endogenous environmental factors could also drive microbial community succession, with succinic acid, lactic acid, and malic acid being the main potential drivers of bacterial community succession, whereas fructose, glucose, and succinic acid were the main drivers of fungal community succession. These results will provide insights into controlling fermentation processes by raw material combinations, optimization of environmental parameters, and microbial interactions.


Assuntos
Lactobacillus plantarum , Malatos , Microbiota , Saccharomycetales , Weissella , Fermentação , Ácido Succínico , Bactérias/genética , Interações Microbianas , Frutose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA